

ESE566A Modern System-on-Chip Design, Spring 2017

ESE 566A Modern System-on-Chip Design, Spring 2017
Tutorial for VCS

Electrical and System Engineering, Washington University
Revision: 01-12-2016

1. Introduction ... 1

.2. Login to the Linux Lab server ... 2

3: Getting started with Verilog .. 2

4: Compiling and simulating your code ... 2

5 Automated VCS Build Process ... 5

6. Viewing Trace Output With dve ... 6

6.1 Basic operation .. 6

6.2 Additional Option to run in Debug mode .. 8

7. Reference .. 11

ESE566A Modern System-on-Chip Design, Spring 2017

1

1. Introduction

In this tutorial you will gain experience compiling Verilog RTL into cycle-accurate
executable simulators using Synopsys VCS. You will also learn how to use the “dve”
Waveform Viewer to visualize the various signals in your simulated RTL designs. Figure
1.1 illustrates the basic VCS toolflow and how it fits into the larger ESE566A flow.

Figure 1.1 VCS Toolflow

VCS takes a set of Verilog files as input and produces an executable simulator as an
output. VCS is capable of compiling both behavioral Verilog models and RTL Verilog
models. Behavioral models are often not synthesizable, so any hardware we intend to
synthesize will need to be written at the register transfer level. However, behavioral
Verilog will still be useful when writing code we do not intend to synthesize, such as test
harnesses. Please be conscious of this distinction, attempting to push behavioral code
through the next step in the toolflow (Synthesis) will likely result in much pain and
suffering.

dve

ESE566A Modern System-on-Chip Design, Spring 2017

2

.2. Login to the Linux Lab server

Detailed explanation is in ese566-linux-tutorial.pdf

3: Getting started with Verilog

Creating a new folder (better if you have all the files for a project in a specific folder).

Then, enter into this new folder and start writing your Verilog script in a new file (.v file).

Example code for modeling a counter is here. In addition to model code, Test Bench

script has to be given in order to verify the functionality of your model (.v file). Example

code of test bench for counter is here.

4: Compiling and simulating your code

In the terminal, change the directory to where your model and test bench files

(Counter.v and Counter_tb.v) are present by using this command:

% cd <path>

For example:

% cd ~/ESE566A/VcsTutorial/

Compile the files by typing in the terminal:

% vcs -full64 -PP +lint=all,noVCDE +v2k -timescale=1ns/10ps <file>.v <file_tb>.v

Important runtime flags:

 -full64 executes the 64-bit version of VCS.

 +lint=all,noVCDE turns on Verilog warnings except the VCDE warning. Since it is
relatively easy to write legal Verilog code which is probably functionally incorrect,
you will always want to use this argument. For example, VCS will warn you if you
connect nets with different bitwidths or forget to wire up a port. Always try to
eliminate all VCS compilation errors and warnings.

 +v2k enables support for various Verilog-2001 language features.

 +timescale specifies how the abstract delay units in a design map into real time
units. This can also be provided in verilog source files as the ‘timescale compiler
directive.

 -v indicates which Verilog files are part of a library (and thus should only be
compiled if needed) and which files are part of the actual design (and thus should
always be compiled).

In the above example, it should be:

% vcs -full64 -PP +lint=all,noVCDE +v2k -timescale=1ns/10ps Counter.v
Counter_tb.v

There should be no error presented in the terminal. Otherwise you need to check your
code and correct them according to the related message. The complier will print out
detailed information about your mistakes in the code.

http://classes.engineering.wustl.edu/ese566/Tutorial/ese566-linux-tutorial.pdf
http://classes.engineering.wustl.edu/ese566/Code/Counter/Counter.v
http://classes.engineering.wustl.edu/ese566/Code/Counter/Counter_tb.v

ESE566A Modern System-on-Chip Design, Spring 2017

3

 Successfully compiledSuccessfully compiled

Figure 4.1 The result of successfully executing vcs

Don t need to recompile

because nothing changed

Don t need to recompile

because nothing changed

Figure 4.2 The result of recompile the code when nothing changed

ESE566A Modern System-on-Chip Design, Spring 2017

4

Error message when encounter a

error during the compiling process.

Error message when encounter a

error during the compiling process.

Figure 4.3 The result of vcs when it thinks there are mistakes in the code

A successfully compiling will print out on terminal “../simv up to date”. And it should
generate an executable file named “simv” in the same folder where your codes are
present. Then in the terminal run:

% ./simv

After the process finishes, “VCS Simulation Report” will be present on the terminal and
a file named “<file>.vcd” will be generated in the same folder where your codes are
present. This is the dump file we specified in the test bench code and we will use it to
graphically display the simulation results.

Simulation ReportSimulation Report

Run simulationRun simulation

Figure 4.4 Simulation Report

ESE566A Modern System-on-Chip Design, Spring 2017

5

5 Automated VCS Build Process

Typing each command via the command line is a tedious and error-prone process, and

should typically be avoided. Instead, we make use of scripts to automate the process of

building our tools for us. The following commands will first delete the simulator you

previously built, and then regenerate it using the makefile(Example makefile is here,

download it and put it into the folder ~/ese566A/VcsTutorial).

% cd ~/ese566A/VcsTutorial
% rm simv
% rm -r simv.daidir
% make
% ./simv +verbose=1

The make program uses the Makefile located in the current working directory to

generate the file given on the command line. Take a look at the Makefile located in

~/ese566A/VcsTutorial. Makefiles are made up of variable assignments and a list of

rules in the following form.

target : dependency1 dependency2 ... dependencyN
 command1
 command2
 ...
 commandN

Each rule has three parts: a target, a list of dependencies, and a list of commands.

When a desired target file is “out of date” or does not exist, then the make program will

run the list of commands to generate the target file. To determine if a file is “out of date”,

the make program compares the modification times of the target file to the modification

times of the files in the dependency list. If any dependency is newer than the target file,

make will regenerate the target file. Locate in the makefile where the Verilog source files

are defined. Find the rule which builds simv. More information about makefiles is online

at http://www.gnu.org/software/make/manual. Not all make targets need to be actual

files. For example, the clean target will remove all generated content from the current

working directory. So, the following commands will first delete the generated simulator

and then rebuild it.

% ~/ese566A/VcsTutorial
% make clean
% make simv

And run the following command you should run the simv file:

% make run

http://classes.engineering.wustl.edu/ese566/Code/Counter/Makefile
http://www.gnu.org/software/make/manual

ESE566A Modern System-on-Chip Design, Spring 2017

6

6. Viewing Trace Output With dve

6.1 Basic operation

After simulation report and “<file>.vcd” is generated, now type the following command in

the terminal:

% dve

This is a viewer to plot and verify your results.

(Remark: an “&” can be placed behind the command, which means this command
will run in background, so the terminal will be released)

Figure 6.1 Start dve on the terminal

Go to “File->Open Database” and select the “.vcd” file from the project folder.

Figure 6.2 dve open database (1)

ESE566A Modern System-on-Chip Design, Spring 2017

7

 Select the .vcd file

Figure. 6.3 dve open database (2)

Then you will find the name of your test bench model in the Hierarchy box (Counter_tb

here). Expand it so that you can find DUT in the options.

 The module name of the test bench

Figure. 6.4 dve open database (3)

If you click on DUT, select the signals listed(all or partial) and right click, you will find an

option “Add to Waves”.

ESE566A Modern System-on-Chip Design, Spring 2017

8

Device(Module)

under test

Select them and right

click the mouse

Figure. 6.5 dve open database (4)

Click on “Add to New Wave View” to see the waveforms of your Inputs and Outputs.

You should see your results in a new window. Then adjust the size of the waveform and

explore other options as well.

Adjust the size of waveform.

The leftmost is “fit the screen”

Figure. 6.6 The waveform display

6.2 Additional Option to run in Debug mode

Instead of compiling the files directly as before, we can enable a debug flag during

compilation by using following command

% vcs -lca -debug_access+all Counter.v Counter_tb.v

Now run the code:

% ./simv -gui &

This should open the dve tool automatically and you can fully run your test bench or

debug it step by step. To do this first select inputs and outputs from variable window

and right click “Add to the Waves” as before. This should open the following window as

shown in the Figure 6.7 . Then click the tool button of blue arrow in brace or press F11

to run the test bench step by step(Figure 6.7 and Figure 6.8). Or click the tool button of

the blue arrow pointing downward or press F5 to run the test bench fully(Figure 6.9 ~

Figure 6.11). Other tool options are also available and just explore them by yourself.

ESE566A Modern System-on-Chip Design, Spring 2017

9

Click here or press “F11” to

run the test bench step by step

move REF cursor front and back

Zoom In Zoom Out

Figure 6.7 The waveform display in debug mode

The cursor indicates which line of code the

simulator is executing when click “Step ” button

Click here or press “F11" to run the

 test bench step by step

Figure 6.8 The code trace cursor in debug mode

2.The report indicates the simulation has finished

1.Click here or press

“F5” to run simulation

3.Fit screen

Figure 6.9 Fully “run” in debug mode(1)

ESE566A Modern System-on-Chip Design, Spring 2017

10

4.Click here or press “F5"

again will reset the simulation

6.Fit screen

5.The report indicates the simulation has reset

Figure 6.10 Fully “run” in debug mode(2) – simulation reset

8.The report indicates the simulation has finished

7.Then click here or press “F5”

will restart the simulation

9.Fit screen

Figure 6.11 Fully run in debug mode(3) -- simulation restart

ESE566A Modern System-on-Chip Design, Spring 2017

11

7. Reference

[1] http://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-tut1-vcs.pdf

If you are interested in exploring further, another example model and test bench codes
are present in the following link:

https://github.com/bangonkali/electronics/tree/master/verilog/adder
Reference for test bench syntax can be found here.

http://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-tut1-vcs.pdf
https://github.com/bangonkali/electronics/tree/master/verilog/adder
https://wustl.box.com/verilogtbref

